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A statically stable stratification with buoyancy frequency N 2 ( z )  = z2 is found to cause 
large changes in the modal structure for viscous plane Couette flow (as compared with 
the case when N2(z )  = 1) and it also has a strongly destabilizing effect on the flow. On 
minimizing with respect to both wavenumber and Richardson number, it is found that 
the flow is unstable if the Reynolds number is greater than about 183. A study of the 
Reynolds stress and vertical buoyancy flux shows that there is a large transfer of energy 
from the basic flow to the velocity disturbances and this is consistent with such a 
surprisingly low value of the minimum critical Reynolds number. 

1. Introduction 
In  the preceding paper (Davey & Reid 1977; hereinafter referred to as part 1) we 

considered the modal structure of stratified plane Couette flow with a constant 
buoyancy frequency, and in this paper we wish to consider the same flow with a variable 
buoyancy frequency given by N 2 ( z )  = z2. This is a case for which the local Richardson 
number does not exceed 2 everywhere and hence one cannot infer stability from the 
theorem of Miles (1961) and Howard (1961). Nevertheless, the corresponding density 
distribution is statically stable and, intuitively, one might have thought that it would 
tend to have a further stabilizing effect on plane Couette flow, which is known to be 
stable in the homogeneous case. 

Huppert’s (1973) inviscid analysis of the problem, however, shows that this expecta- 
tion is false. He found that the flow is unstable if the overall Richardson number? JH 
is larger than 8.  More generally, he found (see his figure 2) that in the a, JH plane there 
are regions of stability, regions of instability with c, = 0 and regions of instability 
with C, + 0. When these results are considered as the inviscid limit of the full viscous 
problem, it is clear that the modal structure of this problem for large values of the 
Reynolds number must differ substantially from that found in part 1. In  this paper, 
therefore, we shall consider some aspects of the full viscous problem for stratified plane 
Couette flow with N2(z) = 22. For this problem it has not yet been possible to obtain any 

Huppert’s analysis was on the interval IzI < T whereas the present analysis is on the interval 
121 d 1. Thus, if we let uH, CH and JH denote the parameters appearing in his analysis, then they are 
related to the corresponding parameters defined in part 1 by UH = U/R, CH = nc and JH = Ri/n*. 
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FIQURE 1. The modal structure for JH = & with a = 0 but aR finite. -, symmetric modes with 
c r -  - 0; ---, asymmetric modes with cr + 0. 

simple analytical approximations of the type obtained in part 1. The present results 
were therefore obtained entirely by direct numerical methods, and throughout the 
Prandtl number has been taken to be one. 

For large values of the Reynolds number, the present results are in complete agree- 
ment with Huppert’s inviscid analysis. In  addition, the curves of neutral stability are 
found to be somewhat similar to those for homogeneous flows in a channel with an 
inflexion point and the minimum critical Reynolds numbers are correspondingly low. 
In  an attempt to understand the basic physical mechanism of the instability we have 
also considered the Reynolds stress distribution and the vertical buoyancy flux for one 
typical value of JH. These results show that there is a large transfer of energy from the 
basic flow to the disturbance flow (as compared, for example, with homogeneous plane 
Poiseuille flow) but a precise description of the physical mechanism involved still 
remains somewhat elusive. 

2. The modal structure for a = 0 and JH = 8 
For a = 0 and JH = 8, Huppert’s inviscid analysis predicts the existence of one 

unstable mode with c, = 0. This result is in marked contrast to the results obtained 
in part 1, where it was shown that, as aR -+ oc), all modes are stable with c, =I= 0. 
Accordingly, we first considered the modal structure of the viscous problem for a = 0 
(with aR finite) and JH = g. The results for the first group of four modes are shown in 
figure 1. 

As aR -+ 0, c,, = 0 and ci is independent of both U and N 2 .  In  this limit, therefore, 
the modes have the same behaviour as in part 1.  For finite values of aR, however, their 
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FIQURE 2. The curves of neutral stability for JH = &, 8 and 1. The asymptotes to the lower branches 

of these curves a,re given by (aR)* = 5.58, 6.26 and 13.58 respectively. 
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FIQURE 3. The curves of neutral stability for JH = 4. 

I8  FLM 80 



630 

a 3 -  

2 -  

1 -  

A .  Davey and W .  H .  Reid 

4 1 ) x  I l f n  

2f n 

t x 3fl l  
J 

01 I I I I I I I I  I I I I I I I I J  

2 x  102 3 5 103 2 3 5 I o4 
R 

FIGURE 4. The curves of neutral stability for JH = 3. The asymptote 
to the lower branch is given by (aR)* = 12.98. 

behaviour is dramatically different. The modes labelled 0 and 1 can be identified as 
temperature modes when aR -+ 0. When aR -f 00, however, they become a pair of 
travelling modes with c i t  0 and c, lying outside the range of U .  Modesof the latter type 
presumably correspond to internal gravity waves and could be studied directly from 
the Taylor-Goldstein equation. Similarly, the modes labelled 2 and 3 can be identified 
as velocity modes when aR -+ 0 and it is one of these modes which becomes unstable for 
large values of aR. The values of (aR)) at which ci = 0 correspond, as shown in the 
following section, to the asymptote to the lower branch of the curve of neutral stability 
for J H  = +. 

These results thus confirm one aspect of Huppert’s analysis but they also raise an 
important question concerning the dependence of the minimum critical Reynolds 
number on J H .  To answer this question we must now consider the curves of neutral 
stability for some typical values of J H .  

3. The curves of neutral stability 
According to Huppert’s results, when t < J H  < 1 we would expect just one curve of 

neutral stability (for each value of JH) along which c, = 0, and this expectation is fully 
confirmed by the results shown in figure 2 for J H  = #, Q and 1. The asymptotes to the 
lower branches of these curves are simply the values of (aR)) for which both a = 0 and 
c = 0 as shown, for example, in figure 1. Before commenting further on these results, 
let us consider briefly the situation when J H  > 1.  According to the inviscid theory, when 
J H  > 1 we would expect two or more curves of neutral stability and this expectation is 
again confirmed by the results shown in figures 3 and 4 for two fairly typical values 
of JH. 
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FIGURE 5. The variation of 01, and R, with JH.  Along this curve C, = 0. 

The curves of neutral stability shown in figure 2 are similar to those found for flows 
of a homogeneous fluid in a channel with one inflexion point and the minimum critical 
Reynolds numbers for them are correspondingly low. This can be seen even more clearly 
in figure 5,  which also shows that there is an overall minimum value of Re for which 

JH = 0-8416, a, = 1.674, Re = 182.8. 

Such a low value of Re is really quite surprising when compared, for example, with 
plane Couette or plane Poiseuilb flow of a homogeneous 3uid, for which Re = 00 and 
6772.2 respectively, and shows tha t  a statically stable stratification can sometimes 
provide an efficient mechanism, which is not present in the flow of a homogeneous 
fluid, for transferring energy from the basic flow to the disturbance flow. 

4. The Reynolds stress and the vertical buoyancy flux 
To study the transfer of energy from the basic flow to the disturbance flow, we 

consider the energy equations for two-dimensional disturbances in a stratified parallel 
shear flow, which, in dimensionless form, are given by 

d / / 4 ( u t 2 + w ’ 2 ) d x d z  dt = - 

and 3 / / & f 2 d x d z  = - a ’ w ‘ P ( z ) d z d z -  RP - /I{ (g)’+ (g)2] dxdz.  (4.2) 

18-2 
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FIUURE 7. The eigenfunction u for JH = &, a = 0*9630,8nd R = 249.9. 

The (dimensionless) Reynolds stress and vertical buoyancy flux are then defined in the 
usual way by 

(4.3) 
where the angle brackets denote an average over one wavelength. In  terms of the 
Reynolds stress function S(z) and the vertical buoyancy flux function B(z), we have 

7 = -<u'w'), b = (dw'), 

(7, b)  = h{fM B(z))exp (2Wit), (4.4) 
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FIGURE 8. The Reynolds stress function S(z)  and the vertical buoyancy flux 
function B(z)  for JH = 3, a = 0.9630 and R = 249.9. 

where s(z) = 4 r  4; - 4i $; (4.5) 

and B(z) = c r $ i - c i $ r  = Ri-'{(&$)r$i- ( 4 $ ) i $ r ) .  (4.6) 

The eigenfunctions $ and c have been calculated for JH = 4, a 7 0.9630 and 
R = 249.9, and these results are shown in figures 6 and 7. The normalization of these 
eigenfunctions was fixed by setting $ ( O )  = 1. From these results it was then possible 
to compute the Reynolds stress function S(z) and the vertical buoyancy flux function 
B(z), and these results are shown in figure 8. Equation (4.1) shows that the sign of the 
Reynolds stress is such that there is a large transfer of energy from the basic flow to the 
velocity disturbances. This might have been anticipated in view of the low value of the 
minimum critical Reynolds number for this flow but it is in marked contrast, for 
example, to the case of plane Poiseuille flow of a homogeneous fluid, for which the 
Reynolds stress is small except near the critical points, and, in addition, its maximum 
value is smaller than S(0) in figure 8 by about a factor of 10 (see Stuart 1963, figure 
IX .8). The vertical buoyancy flux also makes a significant contribution to the growth 
of the velocity disturbances but it has a much smaller effect, owing to the factorN2(z)j 
on the temperature disturbance and has the same sign as the dissipative term in (4.2). 

5. Discussion 
The circumstances under which a statically stable stratification can have a 

destabilizing effect on shear flows of an inviscid fluid are quite varied, as the examples 
discussed by Huppert (1973) and Howard & Maslowe (1973) clearly show. The present 
results for Huppert's problem further show that when the effects of viscosity and 
thermal conductivity are both included the stratification can still have a strongly 
destabilizing effect. The inviscid stability characteristics found by Howard & Maslowe 
for plane Couette flow with N 2 ( z )  = 1 + a2z2 are quite different since this flow is stable 
if Ri > 4 but is unstable if 0 < Ri c and a2 is sufficiently large, and it would clearly be 
of interest to study the effects of viscosity and thermal conductivity on such a flow. 

We had hoped to be able to give some analytical results to complement the present 
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numerical results. Some progress has been made in the case of neutral stability for the 
standing modes, for which c = 0,  but the analysis is substantially more difficult than 
that given in part 1. The major difficulty is associated with the fact that when N2(z) = 9 
equation (2.7) of part 1 cannot be factorized even when a = 0 with aR finite. As a 
result, uniform asymptotic approximations to the solutions of that equation cannot be 
obtained by a simple application of existing methods. 

It would also be of interest to study the spectrum of internal gravity waves and its 
relationship to the velocity and temperature modes as aR -f GO. A simple analytical 
solution does not appear to be possible in this case, even when a = 0, but the general. 
results obtained by Banks, Drazin & Zaturska (1976) strongly suggest that the 
spectrum of internal gravity waves for this problem is qualitatively similar to that 
found in part 1. 

We are grateful to Dr H. E. Huppert for providing us with some of his unpublished 
results and to Dr Banks, Dr Drazin and Dr Zaturska for providing us with a copy of 
their work prior to publication. This work was begun while one of us (W. H. R.) was 
a Science Research Council Visiting Fellow in the Fluid Mechanics Research Institute, 
University of Essex (April-June 1974); the work has since been supported in part by 
the National Science Foundation under grants GP-33131X and MCS75-06449 A01 with 
the University of Chicago. 
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